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INTRODUCTION q

The aim of this introduction is to explain briefly what sense we are
giving to the word constructive.

All objects which we shall consider are to be constructive objects by
which we mean finite configurations of signs. The signs, which can
immediately be recognized as being equal or different, are treated as
atoms that cannot be further decomposed. Constructive objects are to be
considered as concrete objects, that is, in the very end as existing in
time and space. For example, the formulas and proofs of a formal system
are constructive objects in this sense, whereas meaningful assertions and
informal proofs are not. Also, seta in the usual intuitive sense are certainly
not constructive objects.

We accept the analysis of what it means to operate on constructive
objects according to mechanical rules which was given by Post 1936
and Turing 1937a. On this analysis, the rules of computation as well as
the computations themselves are again constructive objects, and it is
decidable whether or not a computation is correct according to a given
rule. More precisely, there is a decidable predicate T'(e, m,n) which
expresses that = is a correct computation from the initial data m ac-
cording to the rule ¢, in which case we can read off the result U(n) of
the computation n. Since constructive objects are simply configurations
of signs, they may be coded into natural numbers. In particular, we
may consider ¢, m and n to be natural numbers.

We shall say that e is applicable to m if there exists an n such that
T(e, m, n),

VaT(e, m, n).
It results immediately that there can be no rule which allows us to
decide for every rule m whether or not it is applicable to itself. For then

there would be a rule e which is applicable to m if and only if m is not
applicable to iteelf,

VaT(e, m, n) — —VnT(m, m, n).

In particular, e is applicable to itself if and only if ¢ is not applicable to
itself,
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VnT(e, ¢, n) — —VnT(e, ¢, n),

which is a contradiction.

In its final analysis, every theorem of constructive mathematics
has the affirmative form that a constructive object with a certain pro-
perty has been found. The crucial question is what properties we are
going to consider as constructively meaningtul.

The simplest case is that of a decidable property P(n) which is simply
a rule which allows us for every natural number n to compute a truth
value. Applied to such properties, the classical propositional connectives
A (and), v (or), — (not) and - (implies) have a clear computational
meaning which is given by the ordinary truth tables and the laws of the
classical propositional logic apply. For example, P(n)v—P(n) is a
decidable property which holds for all natural numbers n.

Classically, arbitrary logical formulas built up from decidable predi-
cates by means of the propositional connectives and the quantifiers
A (for all) and V (there exists) applied to number variables are considered
to be meaningful in terms of the classical notion of truth, and the laws
of the classical first order predicate logic are valid under this interpreta-
tion. For example, the formula

AeVmAn(T(e, e, m)v —T(e, e, n))

is true classically.

Constructively, arbitrary formulas built up from decidable predicates
by means of A, v, —, -, A and V are not considered meaningful without
further analysis, and only when such an analysis has been given is it
meaningful to ask what laws of logic that are valid.

We shall begin by considering properties of the form I3,

AmVnP(m, n),

where P is decidable, to be constructively meaningful. The forms I1? and
392, that is, AnP(n) and VaP(n), respectively, are special cases of this.
The most typical example of a I13 property is that of a rule e being applic-
able to all numbers m,

AmVnT(e, m, n).
When stating AmVnP(m, n) we mean that we have found a method

which allows us, whenever a natural number m is given to us, to find &
natural number n such that P(m, n) is true. Note that the intended
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meaning of a 1$ statement is the same under the classical interpreta.
tion. For if AmVnP(m, n) is true classically, then we actually have
a method of finding for every m a natural number n such that P(m, n)
is truec. We simply compute one after anohther the truth values of

P(m, 1), P(m, 2), ...

until we hit upon an n for which P(m, ») is true. Thus, there is no dif-
ference between the classical and constfuctive interpretation of I3
statements as far as the intended meaning is concerned. The difference
lies in the methods of proof that are accepted. For example, let P(n)
be the statement that n is the Godel number of a proof in axiomatic
set theory (or even second order arithmetic) whose endformula is0=1.
Then P is a decidable predicate and the statement

An —P(n),

which expresses the consistency of the formal system, holds classically
although we possess no constructive proof of it at present.
Consider now an arbitrary prenex formula

Am\Vn, ... AmNn,P(m,, n,, ..., my, n,)

with P decidable. We shall say that such a formula is constructively valid
if we have found rules f,, f,, ..., /, such that /, is applicable to all ¢ tuples
of natural numbers, i=1, ..., 7, and

Amy ... myP(my, fy(my), ., my, [y, ..., my).

Written out in full this means that we have found rules f,, f,, ..., f,
such that

Amy ... m\Vny .0y (T(fy, my, nA ..
ATU}: (mlo seey ml)s nl)AP(mll U(nl)r seny mh U(ﬂy))).

This property is considered constructively meaningful since it is of the
form I13%.
The formula

AeNmAn(Te, e, m)v —T(e, ¢, n))

is not constructively valid although it is classically true. For suppose
that / is a rule which is applicable to all natural numbers and satisfies



Aen(T(e, ¢, f(e))v — Te, e, n)).

Then
T(e, ¢, f(e)) »VnT(e, e, n)

8o that we would have a decision procedure for the predicate VnT(e, ¢, n)
which is impossible. This example shows that the laws of classical
logic (in particular, the law of the excluded middle) may lead to con-
clusions which are not constructively valid.

The first two chapters are based on uncritically accepting I13 state-
ments as constructively meaningful, and the rudiment of logic that is
involved may be understood in terms of the notion of constructive
validity.

We have seen that the classical notion of truth differs from the notion
of constructive validity. Nevertheless, it turns out that the notion of
arithmetical truth may be constructively understood in a quite different
way by means of the no counterexample interpretation (due to Herbrand
1930 in the case of first order predicate logic and extended to number
theory by Kreisel 1961 who introduced the terminology). Consider
again the prenex formula

Am,Vn, ... /\m,V'n,P(ml,.nl, ey Ty, )
which we denote by A. Then
-4 «+VmAn, ... VmAn,—P(fy, n,, .., m), n})
Vfy o fhAny oy — Py, ny, o f(, e, 10000 ny)

where f, ranges over all number theoretic functions of i —1 arguments,
i=1, ..., j. Consequently,

A Ay [Ny P, 0y, - fy, e ny0), ),

the latter formula being called the no counterexample interpretation of
A. By coding f,, ..., f, into a single infinite sequence of natural numbers
and ny, ..., n, into a single natural number we see that t.he no counter-
example interpretation is of the form I1},

Amymy ... m, ... VnP(m;m, ... m,),

P being a decidable property of finite sequences of natural numbers.
The most typical example of a I} property is that of being an ordinal of
the constructive second number class,

We now define what it means for m,m, ... m, to be barred by P.
Firstly, if P(mym,...m,) is true, then m,m,..m, is barred by P.
Secondly, if m,m, ... m,m is barred by P for all natural numbers m,
then m,m, ... m, is barred by P. Transfinite inductive definitions of
this kind will be considered constructively meaningful, and we shall say
that a I1! statement of the above form holds if the empty sequence (J
is barred by P.

As is easily seen, the equivalence

MAmym, ... m, ... VnP(m, m, ... m,) « ] is barred by P

holds classically. Thus, the intended meaning of a 1} statement is the
same under the constructive interpretation we have adopted as under
the classical interpretation. The difference lies only in the methods of
proof that are accepted. This is entirely analogous to the situation for
I1¢ statements discussed earlier.

In intuitionistic mathematics both sides of the above equivalence
are considered to be meaningful, the universal quantifier on the left
being understood as ranging over all choice sequences of natural numbers.
The fact that the equivalence holds intuitionistically is the content of
Brouwer’s bar theorem. We consider the arguments given by Brouwer
1927b in the proof of the bar theorem rather as an intuitive analysis
justifying the definition we have adopted of what it means for a II}
statement to hold.

It results from what we have just said that as long as we restrict
ourselves to Il} statements we can understand Brouwer’s continuum
in an intuitionistically equivalent way without using choice sequences.
A completely different way of getting rid of the choice sequences is to
interpret quantifiers over number theoretic functions as ranging over
all rules which determine such functions, that is, over all numbers e
such that AmVnT(e, m, n). This is the way chosen by Markov's school
of constructivists as well as by Bishop 1967 in his recent book (which
the author did not get access to until after this manuscript was finished).
In Bishop’s case, the pathologies born out of this conception areavoided
by making suitable continuity assumptions.

The no counterexample interpretation together with our analysis of

1 statements allows us to understand constructively the classical notion
of truth as applied to arithmetical formulas. Since this way of under-
standing arithmetical truth is classically equivalent to the classical one,
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it is no wonder that the lawa of classical logic turn out to be valid under
this interpretation.

Actually, once we agree to accept Il} statements as constructively
meaningful, we can understand constructively much more than the
notion of arithmetical truth. Large parts of analysis, including the
theory of ordinals of the second number class, Borel sets and Lebesgue
measure, can be treated using these abstractions. This is shown in the
last two chapters. However, stronger methods are required for a con-
struotive analysis of the Cantor-Bendixson theorem (this was shown by
Kreisol 1959a) as well as for a treatment of the ansalytic and, even more
8o, projective seta.

More powerful tools, adequate at least for a treatment of the Cantor-
Bendixson theorem, are obtained by introducing constructive higher
number classes.

CHAPTER 1 Lo

RECURSIVE FUNCTIONS

1. CONSTRUOTIVE OBJECTS

We shall try to delimit the notion of a constructive object. The simplest
examples of such objects are obtained by combining the letters, signs or
symbols of a finite alphabet into strings or words. Taking in particular
the alphabet whose only letter is the stroke |, we get the natural numbers

armm..nan..

Here, and whenever there is a risk of confusion, the presence of the
emply word is indicated by the symbol [1. The integers

W= =1grim..

are words in the two letter alphabet | —. Adjoining the sign [ we can
construct the rational numbers

i —‘III/llII =1 ...

Slightly more complicated examples are afforded by the formulas of
an axiomatic theory such as first order arithmetic

Az—(z'=0) Vz(z'+a=b)—> —(a=b)..

Also, we can consider constructive objects which are not built up in a
linear fashion, e.g. finite trees
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matrices with integral elements



